CAPITOL AREA TIMEX/SINCLAIR USERS GROUP :Formerly

 Prince George's Timex/Sinclair User's Group

July 1985
Vol. 3, No. 4

President's Column
Well, it's been a year that live been serving as president of C.A.T.S. When I was elected to the post, I never dreaned that the User's Group would still be going strong one year hence. I thought there night be perhaps 10-15 diehards hanging around. Instead, we've got over 168 members, and a press run of 308 newsletters each month (in case you're wondering, the extras go out as complimentary copies to other User's Groups, manufacturers, and distribution at two local stores).

This strength has been due to the dedication of a number of longtern members, and to the acquisition of sone active new members. Jules besang has been tireless in promoting the interests of the club, acting as contact for new members, and soothing the flow of the newsletter through the Post Office. Perhaps his greatest coup was last month's newsletter delivery - 3 days!

There are many other members that deserve acknowledgment, but 1'm afraid that singling out any more would slight the efforts of others. A look through the last few newsletters will show you those members that have been contributing. Not to forget those members that have been attending meetings for the last three years, They've given ne, and the others that have chosen to stand up in front, the encouragement to keep going.

SUPERTAPE!

From the South Florida $2 \times U G$ comes news of a way to link aid to the Ethiopian Relief Fund with our computers. Band-Aid Trust, cfo Story Howard, 38 Baker St. London W1, have assenbeled a Spectrum SUPERTAPE. It includes ane programs from Elite, a Horace game from Melbourne House; 3-D

Tank Duel from Real-Tine, and six other full scale programs (not forgetting, a "hit song"). "Since all the money goes to feed the starving, this is an incredible offer. ' Send $\$ 12.95$ + tax (\& shipping, probably) to the Band-Aid Trust.

An "Orphan Computer?"
News from the local paper indicates that other computer brands nay be joining us in orphan status. As of today, Apple fired 25\% of their workforce. Sinclair has joined Steve Jobs in being kicked upstairs. I was amused to read an office automation nag blame poor sales on people buying PC's. It looks like, though we thought we were leaving the vital world of computing, we were actually leading the way!

Last Meeting

We had a rip-snorting meeting in June. We started off with balloting for officers, and the verdict was unanimous for the nominated slate. Tony Brooks gave an engaging overview of the 2868 to Microdrive connection, and a (very satisfied) customer's view of Bob Dyl's English Micro Connection. Hank Dickson then stole the show when he introduced two youthful Science Fair contestants - details on that portion can be found further on in the newsletter.

And Next.
First of all, I will be handing the presidency, and leadership of the meetings, over to John Conger. I wish him well, and promise to help him as much as I can. In addition, Wayne kay will be giving a well-prepared presentation on spike suppression, and power line conditioning in general. Let's all turn out to welcome John and Wayne!

TAPE DUETHE
Ey Him nerkenze
The last tape mberme ins a success I was plessed to see so maty tape recormers and participants mportmetely
 the future the tapes will be tell minties long se that evertom will hove chatoe. I will also use my $Z \mathrm{Bl}$ th test some tapes. Fhears that sone peqpie his not get gous copios.
 the lou cualitu tapes I Was selvins. These I will mil to ant earer purchasers for there whing a tope price subject to chame whout notice, fil have amother tape at the hext weting for the TE lotid However his bill one again simply be more progran from wh collection EMu ím tapped out. Please brime some of sum progams to me at the metimg or my heme Therwise there wil not be any hen tave

 Su-Ese-74\% we both live at The Erie

N/L DEADLINE
MEETING DATE

July 13

August 10
September 14
October 12

July 19
August 16
September 14

Mens 1 etter Team
Harvey Altergott
Tony Brooks
John Conger
Monte Copeland
Hank Dickson
Mark Fisher
Sarah Fisher
Andrea Frankel
Jules Gesang
Ed Grey
London Sunday Times
Jim Mackenzie
Ward Seguin
SFZXUG
Al Strauss
Washington Post
H. E. Weppler

This Month's Puzzle

Construct a five-line program that will:
1.) accept string (NPUT (assuming all-alpha string)
2.) PRINT to screen a transposition coded version of the input, transposed a random distance.
3.) PRINT only alphabetics.

Yes. I know you can get it all in one line on
the 2068 - singie statement lines only!


```
Madzem!, 00,040
HME 7, beg
```

Mar Fisher
PHEAdEnt CRTS
DEET Mr Fisher:
In the Hay deus tetter maj
impressed by Errartsprotem
"Prevision multiplication"
I am attiring a revision t
Which shortens that program
-educes the minuet inputs to tum
and ad is a destine partan
GEpeditity.
I Enjoy the dews titer and

Reef up the good wort a

EYPRMEES MUTIPGRETHOM

Four one wit rive the rom-

The abilitiontade termed
fractions EBT be adder to the

tin bins bested in Fig te
Tum :

FIGURE THE

MACHINE CODE NOTES

Our Machine Code classes will continue to meet on the first and third Saturdays of July and August at 10 am to 1 pm (summer hours) at the Chevy Chase Library. To cover the text material to the point where we should become reasonably competent will take about twelve sessions, or to mid November. The text is Rodney Saks' Programming the 280. available at Maryland Book Exchange.

If there is enough demand for a weekday evening class, we will set one up in a convenient location. Give me a call in the next few days if evening classes are better for you.

I have written some lecture notes and diagrams for class use which will be distributed to class members. Some of these are being adapted for presentation in the Newsletter. When they are all assembled over the next six months they should make a simplified Handbook on Machine Code to use as a refresher.

We have held two MC classes to date (June 13) with a third class scheduled for June 15th. So far we have covered:

> Organization of the 288 chip
> Binaryand Hexedecimal number systems
> Binary addition and subtraction
> Introduction to the Assembler
> Writing a machine code routine to multiply one byte numbers

June 15 th we are scheduled to cover improving the multiplication routine, using the Hot 2 Assembler, and also we will cover Computer Logic with the aid of Brian Little.

It is still not too late to sign up for the weekday or Saturday class, so give me a call if you are interested. (John Conger 654-5751)

ZK CALCULATOR

2X－T／S 1000

by Monte Copeland，South Florida 2XUG
Boynton Beach，FL 33425－8951
Here＇s an idea for you 2 K TS1000 users．This program turns your $1000 / 2040$ system into a printing calculator，This is also a very educational program，in that it uses the Hewlett－Packard type of Reverse Polish Notation．Any of you who are learning FORTH，take note；this may be just the sort of practice you need．

COMMANDS

＂D＂	display stack
＂C＂	clear stack
＂P＂	print top of stack
〈ENTER〉	push \＃on stack
＂K＂	add
＂J＂	subtract
＂B＂	multiply
＂U＂	divide

To enter a number you press ENTER， then type the number or expression and press ENTER again．The structure of the program is；a case statement within an infinite loop．After you key in the program，SANE it by typing GOTO 3000. This will make the program ＂auto－starting．＂

This program may not be the most practical way to get a printout of your calculations．It does，however， demonstrate some great features．It shows RPN，the use of a push－down stack， and how to program a case statement from BASIC．

```
    10 DIM S(5.2)
    12 LET SF=?
    15 GOT TOEES INMEY品=".. THEN EO TO 4%
    40 IF INKEY## THEN EO TO 4%
    SD LET I=EDDE INKEY%
    80 LET ESF=5F゙-1
    100 IF I&>113 THEN EO TO EDZ
    110 INFLIT X
    120 LPPINT x
    130 LET EF=SP+1
    140 LET S (SF)=x
    150 GO TO EES
    3QD IF I&EI THEN ED TO SOB
    2EO LETNSF=䍃ETHER CLEHR"
    230 60 T0 2ES
    E40 NEXT
    300 IF ICY4I THEN GO TO 420
    S20 FOR N=SF TO 1 STEF -1
    330 LPRINT N;"."S(N)
    300 G0 TO EES
    400 IF I<:EO THEN GO TO 500
    410 LPRINT "STACK TOP = "S(SP)
    420 GU TO 2E3
    500 IF I&,4E THEN EO TO 50. 
    510 LET S(EEP)=5 (RSP) +5 (SP)
    520 LET SP=ESF
```


Puzzle solutions！

Here are two member＇s solutions to last month＇s puzzle．Though none of them does the job in exactly the way I had in mind，each of the four uses some unusual programming trick（OK，algorithm）to get the job done．
From the Barasches：
10 FOR $A=1$ T0 3
20 FOR $B=1$ TO 3
30 FRINT A；＂，＂
40 NEXT B
50 NEXT A
（Nested loops）

From Al Strauss：
（Use of VAL with string sliting）

（Loop with STEP－1）

$\begin{aligned} & 525 \\ & 530 \end{aligned}$	LFRINT＂＋＂ EGTO EES
600	IF I＜ 447° THE
010	LET S（BSP）$=5(85 P)-5(5 P)$
OCD	LET SF＝E5p
025	LFRINT＂－＂
630	GO T0 EES
780	IF I＜ン3E THEN GU TO Bing
710	LET S（SEP）$=5(\mathrm{SSP}) \times 5$（SP）
720	LET SP＝B5P
725	LPRINT＂${ }^{\text {c }}$
7.10	G0 TO 2E3
806	IF I®．59 THEN GO TO 9 W0
810	LET S（ESP）$=5$（BSP）$/ 5$（SP）．
S．0	LET डF゙＝EらF
8.5	LPRINT＂ 1 ＂
830	GU TO $2 E 3$
930	IF I 3 O THEN GO TO 2E3
910	REM JLOW
930	CLEAR
940	STUP
20030	IF INKEY $\ddagger=$＂．THEN GO TO EES
380	GO TO 40
3060	SHUE＂E＂
3010	LFRINT＂OK＂
3020	E0 TO B

CRITICAL FATH METHOD (CAM)

This age program calculates the minimum ammurt of time required to perform a set of related activities and identifies the "writical" path n The \because motion path is that set af activities that tageather determine the minimum amount of time required.

Esth activity begins and ends with a "node" or milestone as in a FERT Ghat. For example if awtivity 1 Was tu go from Washington to Chicago the leaving af Washington would be the start mode which could be identified by any number , and the arrival in Chicago would be the said nome which would alsabe identified by a number.

As an examples getting to work would be considered to be five
 getting a shower, 3 shaving, 4 getting breakfast at restaurant and 5 taking subway, as shown in the table.
activity start/end time cast

In this mesa amtivities 2. $3.4,85$ form the critical path of 132 minutes amd total most is s7.00.

The program an han hand 100 different awtivities. This can be increased by changing I int 70.

PLEASE! Use Radio Shack thermal paper, and BOLD CHARACTERS, as shown in the June and April newssleytters. Ed.

```
    LOEH EPQ
```



```
    ftica path of metuory
    ##EM Events begin& End at *
    nades
    OD REH A#=ETGRT FND END NODEE
    FOR ERGH RCTIUITY
        TOEH S品=EFRLY ETART TINES FO
    F ERCH FGTIUITY
    40 FEH F䇂=ATE FIMSH TIHES FO
    P EGGH PGTIUTGY
    GU REM E#=ORHTIONE AND MOETE
    GF GORHPL RCTTUTTIES
    OF SRAEH BOTIUITIES
        70,4 FHGW,Z
    8
    00% FFIMT
    LQ FRINT :HOU HPNY BCTIUITIES:
    111 FPTMT :HM THIS NETMORKO:
    INPUT A
    BD FGE I=1 TG N
    40% FRINT
    E
    UENT: GIER DRTH FRR ERCH
    EL PRTNT "EUENT ETPRT END
        TGE COETM
    SG FRINT I:
    IE, IMF|T A!I:I
        FFRTMT HI:IO :FII,I!
    EE INFHT FUT:
```



```
    0-8n
    190 TF A(I:Z) (N+E) THEN GO TO
    20
    SOU FFINT ETHRT NOQE HUET EE N
    HEEFEQ GMEF THRN ENE NODE FNQ
    NO WQE GOM NGT EXCEEQ THE NUHE
    SQ% FRINTES EY MORE HHRN ONE:
        PRIN
        GQTT 1E%
```



```
        ET
    =0 LET F,I)=0
    GQ NEXT TONO TO FIND EPRLY ETAP
    T THEE FGR NETMORE
    QQD FPR I=1 TO N
```



```
    1) THEN EO TO 5S0
```



```
    -1
    SE NEXT I
    BD LET F(A(N, () =S|R(N, O)
```



```
    FINISH TIMES FOE NETUOEK
    BED FOP I=N TO 1 STEP -1
```



```
    20
```



```
    1) THEN GO TO 4E0
    4000 T0 400
```



```
    -1)

Creating EaER－uf cesset

If Hou naye ever attenpted to make a back－bp sopy ge gome of the TE sot tugre guth as
＂UH－FILE＂ar＂UL－GALC＂UEing
the shuE Frogram functan Hou Sogn found out it doesn turt＝ The resson tre but of the Frogram is in marhine odde． But it can be done and mppendix E of the EDEB manus！Gives a Elue as to hou to do it．It is mot obvibus so bet me teb you以hat I＇ve tearned．

First I list the seps and then Expain a cubple of FOints．EuEn i Hou don t understand my Exp anztion uod Ehould be able to dup ifatemy steps．

1．THFE in：MERGE Mit le：
Q．Etart the yu－FILE BaE and Fress EMTER
S．Btop the tape 引s E0Q as HoU EEE DK On tre Erem．

4．Disflau the BABTGEROMEM

LEAR GBEG：LORE BCREEN

 1005 GOUE 900 EE E PRHT＂FO ss to UEFIF ：יBr any other k Ey to EOntinue．
1010 IF TNEEY年＝＂．THEN GU TO 101


\footnotetext{
5．Edi HEDEBD bH dELEting
E，Etart the
CESETtE 3．air FUN ENTEF
}

7．Stop the tape uhen the U－FIE menu appeg br the Erfeen．

B．Now Save the frogram on a bunk casestoe Tupe in： BAUE＂धite＂LINE EO
 the tape，
10.

TUPE in： ERUE Kx

11．Hit：ENTEF and start the士日Fも

1玉．Stop the tape when DK appears The Frogram fite Should be on uour derk－bp Cassetter Detete the Frogram from memory and try resding it or un Dactup tafe．

There je thres modutes in
the un－FILE And ideuiEe in UU－GALG Program．The first ig z bssitprogrom modute whith initizizes some of the yarjables；but most important： it instructs the mathin to Fead in the next tur mertine Fode modules＝The pret
 ses uhen the serond mathine code modute is bang bated It＇s neat but you don thes The grten display for tape bagk－up purposes，Thererote Step s batu deterstre jued disfley module the Eerond mathine sode module is the functional partor the progum that performs uhat the program is ᄅduertised todo．

Ft the completion af Etep 7 you have the entife program in the mathine except por the EGEER displauz ETEPS B－11 saue the program on uour bastup tape，first fhe besi： code and then the mathine bode Step E Eues the program se that the basit code abtomaticuly startsuith line 10 Th：पu－FILE when the Frogram is loaded from the ba：k－4p tape．

Step in seves the mathine
 uith address ebeben The mathine rode module mey not be 37060 butes long but AGHing knouledge of hou big the Frogtam is I Esbculated this number：I Kneu RRHTOF i 3 normally Esje7 seE pege gee of the manual and I Nneul the basit program iosded the mathine code starting uith address ebebs beceuse statement So dif the bis program seys CLEAR डठ巳ठ，The differente betueen these numbers is 370 b ．

SCIENCE FAIR EXHIBITORS FIND SINCLAIR COMPUTERS A BIG HELP IN FURTHERING ROBOTICS AND CONTROLS

\section*{MIKE O'NEILL \\ Ninth Grade \\ Bowie High School \\ "Computer Control of Outside Devices"}

The 1985 Prince George's Area Science Fair was held last April on the Largo campus of P.G. College. It brought together 300 outstanding students from 50 high schools located in four southern Maryland counties. Their projects were distributed over twelve scientific categories, ranging from biochemistry to zoology.

Two of the exhibitors employed Sinclair or TIMEX/Sinclair computers in carrying out their projects. This proved to be be both a useful and successful technique, since it helped them earn the honors and recognition in their local fairs that made them eligible to represent their schools at the Area Fair.

These two P.G. county students found time in their busy end-of-school-year schedules to appear before an attentive and appreciative June CATS meeting to display first-hand their slick computer-oriented science fair projects.

RICK COVELL
Senior
Oxon Hill High School
"Robotics via Computer Control"
Rick has demonstrated a keen interest in robotics for several years. Last year he was the grand award prize winner among the 400 entries in the Oxon Hill science fair using a radio-controlled robot he had constructed.

In June, Rick graduated with the first full four-year class of students to weno its way through the oxon Hill H.S. Science and Technology Program. This is a highly competitive program now offered as part of the curriculum within two P.G. County high schools. It prepares the students for further education in high technology subjects. Although a highly academic program, Rick still found his favorite courses were his shops electives.

One of the graduation reqirements for the science and Technology program is a
"Research Practicum". It is based on a year-long research or engineering project. Rick's robotics project was the visible evidence of his research practicum. It was supported by a thoroughgoing written research document.

The project Rick displayed to CATS consisted of a robotic manipulator arm under the computer command of a \(T / S\) 1000. This prototype proved to have the same control problems encountered with a light duty industrial arm.

Creating it involved understanding of electricity, electronics, microprocessors, microcomputers, instrumentation and control, and mechanics.

After all the hurdles were cleared in designing and building the mechanical arm, Rick was able to locate in a magazine for industrial arts teachers an 18-line BASIC program to provide general control for the arm. A ByteBack BB-1 interface functioned between the Sinclair and the relays that drove the stepping motors and lead screws on the mechanical arm.

Mike has a \(2 \times 81\) which he and his father put together some time ago. He has added 64 Kb of memory to it. A couple of years ago he started to become interested in ways the \(2 \times 81\) could be used to control various external devices.

He proceeded to fashion his own custom interface to control such devices, using the port at the back of his Sinclair. (See accompanying diagram.)

For his science fair project, he hooked up a display with four devices:

A light bulb
An AM radio
A beeper
A fan motor
The interface he made can handle up to eight devices---one for each bit on an eight-bit bus.

He created his own BASIC program to permit easy operation by the user. The program has a sparkling menu-type screen. There is the ability to use an attached joystick to select the desired menu choice and thereby start or stop the desired external device.

Between the interface at the back of the Sinclair and the devices is a group of relay look-alikes which translate the on/off signals from the computer into action. These are actually "open collector transistors" or UHP-400 chips, which function in a manner similar to relays.

Taken all together, Mike's project demonstrates a positive way of elevating small computers such as the Sinclair into a realm where they can do useful work.
For the future, Mike has plans to inject some inputs into his Sinclair using itemd such as heat sensors. These inputs will then be used to trigger functions such as watering systems to provide moisture for plants or cooling for dwellings.

Rick borrowed a T/S 1000 from a friend to drive the arm for the science fair presentations. He never bothered entering the 18-line program from a cassette--he just entered it fresh every time he set up a demonstration. For one thing, it seemed the \(T / S\) 1000 was terminally unable to load from tape. So Rick was just glad that he didn't have to contend with a 180-1ine program!!
(Incidentally, CATS member Sam Lefkov has generously offered to replace Rick's defective T/S 1000 with one of his own!)

This fall, Rick will be entering the Florida Institute of Technology in Melbourne, Florida, where he will continue his studies in robotics.

The mechanical arm, construction costs of which were partially underwritten by the school, will remain behind as a teaching took for future generations of roboticists at Oxon Hill High School.

Mike's favorite subject in school is mathematics. His project demonstrates the application of good mathematical concepts to a series of practical applications.

For future Area Science Fairs, the mathematics and computer projects may be separated, which would definitely be to Mike's advantage. He would then be competing with other computer projects exclusively, rather than against the pure mathematics projects as well as the computers.
We look forward to seeing Mike's work as it
progresses through the years to come!!

\section*{What's Ahead}

RICK COVELL will be taking his interest in robotics and computer control for robots to the Florida Institute of Technology this fall.

MIKE D'NEILL will be pursuing his computer-drive process controls during the next school year, with certain modifications and enhancements to this year's project already taking place in his mind.

In recognition of their fine work and their appreciation of the usefulness of small computers, both young men were made honorary members of CATS by acclimation at the closing of their presentations.

\section*{Volime Diagram}


\section*{Basic Functions}
hand / gripper
2 wrist
3 elbow
4 shoulder 5 base


Mike O'Niell


Rick Covell





 - direct conapet with phone load for clear comenication a 5 hour compuserve starter kit awilable separately


 F Ind states indicaters to moaitor status of relays
- maleg to digifal conerter sold separately to allom controller to measure moltages


 - St eale and sefture provibed -C.IT0W 7manp parallel printer available separately
98 DAY WARRENTY ON ALL MODULES
Any hardare wodnle may be returned for a full refund withir 11 days of sectipt.






-Kit


N
\(\frac{5}{2}\)
\(\frac{5}{5}\)





DMMLLE itill assmbied
- MaMEE FOR RS- 323
- \(0 \times\) PRAFILE (TSilut)


C.A.T.S. 9 July

\section*{M 든둚ㅁ}

network of computer enthusiast who maintain their systems to enable individuals and groupa (like us) to communicate at low cents) per message sent to most nodes in the U.S.A. from any other node. That includes Hawaii and Canada. England and other
foreign countries cost more. Messages are exchanged between foreign countries cost more. Messages are exchanged betwsen could be sent and an answer received back (from across the
country or across an ocean), in a little over 24 hours. Now that's incredible. Let's get together and make it work for us.
My friend. Dave Clifford (of Z-LINK fame) and I have laid the groundwork. If you are interested in Joining our Timex network,
you must locate and contact (by modem) a Fido node in your local area and leg-on. if you cannot find a Fido-Net BBS. then send me phone numbers. You should find the information needer to send mail. on your local Fido. Address mail to:

\section*{\(\begin{array}{ll}\text { Name: } & \text { Ed Grey } \\ \text { Node Name: } & \text { Switck Pak\# 1, Hawrhorne CA }\end{array}\) \\ Node Number: 411 in NetA 1}
The following Fido node is also in my local area. Use it as an
Node name: Culver City Fido
Please send your name and Fido node number along with any suggestions that you may have pertaining to this Timex Network.
Remember, this network is for all of us Timex survivors. Lets combine our efforts and share information through electronic the ball is in your court now. We look forward to hearing from
you soon. Take care and \(\ggg \ggg \ggg \ggg \ggg \ggg \ggg>\) Keep On TIMEXing
EdGrey
Sysop of the TIME《X>CHANGE
(213) \(325-0213\)
Dear Fellow Timex Computer Users,

This lettar is about an idea from which we all, as Timex
computarist, can reap enormous benifit at very little cost. As
you know, information about our Timex computers travels at a
snails pace even in this computer age. The Timex magazines are
often weeks or even months late with information that may have
been useful had it been delivered on time. I received the March
issue of a magazine with an advertisment for an Income Tas
progam. I could have used that program inad a good revue in the
same issue), the problem was that the magazine wasn't delivered
until April 5 , 1985. Ten days was not enough time to order and
then use tha program. Once again foiled by atale information.
The bdeal solution to this problem is to set up a nationwida tele-communications network with the capability to transmit and receive information (data) in a reliable and expeditious manner. This data, ideally, should be available at all locations mis-information. Now if this TIMEX NETWORK had a cential location, to which users could send current info, have it basis>>>>>>>>Now that is CURRENT INFORMATION. Oh one more thing, this network should be as cost efficient as first cless postage and much more reliable.

I have been trying to paint you a picture of computer age communications network. Even though this network would be expensive to set up and difilcult to get running properly, once good news, such a system is already up and running, just waiting for us Timex Users to log-on and use it. The name of this
system is Fido-Net. It is international in size, the network includes the entire Unitad States (including Hawaii), Canada and England. Fido-Net is a group of independently owned and designed to handle (BBS) and transmit (network) messages. The system will work with any computer/modem combination, including 268 nodes (each individual computer in the network is called
node) strong and growing at rate of 15 per week. This is

Foor Maris Telephone Modem
Poor Man's MODEM
by Anon., South Florida 2XUG
Boynton Beach, FL 33425-0951
Now you can send and recieve programs by telephone, without a MODEM. In fact, all you need is a small transformer, an on/off switch, and an earphone jack - total price, about \(\$ 10.00\).

The transformer must have about 500-600 ohms on the side that connects to the phone line, and about 30-100 ohms on the computer side (DC Ohms as read on any ohmmeter). I have found that the intermediate transformer in a solid state audio amp will usually work well as long as the resistance is as stated. The wiring is simple. The easiest way to do it is to build this into a cheap phone. If you don't have one, you will either have to buy one, or get a phone splitter such as Radio Shack \#279-357 or \#270-373 and a phone cord that has a modular plug on one end and wires on the other (\#279-391 or \#279-364). If you have the older type jacks that are wired to the wall, you may wire it in, but it should be able to be removed.

First connect the GREEN wire from the phone cord to one lead of the 600 ohm side of the transformer. Now connect the RED wire to one wire of the switch. The other wire of the switch goes to the remaining wire of the 600 ohm side of the transformer. Now all that is left is to connect the other two leads of the transformer to the earphone jack, or to a shielded cable terminating in an earphone jack. You can put it in a small box or build it into a cheap phone (which will avoid the purchase of a phone cord).

Using it is also simple. To send a program, set your volume on your recorder to about 1/4. Plug the cable into the phone and the earphone to the transformer. This is assuming that you have already called your friend. Now have him (her) plug their adapter into the phone and their MIC jack. Now have them start their recorder in RECORD mode and cover the phone's own mike, or hald MUTE on. Now play the program to them just as if you were loading your computer! After you have sent it, Have them try to load it. If it won't load try a different volume level. I have even plugged the transformer into a cheap audio amp (Radio Shack \#277-1008 2 \$11.95) and loaded the program right into the computer!

It will take some trial and error to find the right volume levels but if it saves some driving I think it's worth it!
[Ed. note: I don't know what Ma Bell would think about this project, but I guess she's got other things on her mind right now. Just don't fry the central office!]



\section*{ZGo Chip Organization and 64K Memory Diagram}

In the Machine Code class, the two diagrams below were used to introduce the concepts of 280 memory registers and RAM addresses necessary to an undersanding of how and where data and data
addresses are handled by machine code programming.
If you want them fully explained, come to the next MC and Assembly Language class. (See article: "Machine Code Notes".) (John Conger 654-5751)


How 16 CPU Pins Read 65,536 addreseses


\section*{MSCRIPT Tips}

MSCRIPT is a great program. The documentation, however, isn't so great. MSCRIPT was written to apply to a variety of machines, and the documentation provides only one short page of specific instructions for the 2068. In this article, I'll discuss two major classes of omissions in the documentation - missing commands and detailed SAVE and LOAD information. As a conclusion, I'll cover some points that can make using MSCRIPT even more useful.

\section*{The Missing Commands}

Both the manual and the HELP screen ignore several important commands. These commands relate to cursor movement, and all are reached through the caps + symbol shift, or Function Key. These commands should have been included in the HELP screen, but they weren't.

Fn-5: This brings the cursor to the left margin in one stroke, similar to a carriage return on a typewriter, but without the newline.
Fn-8: This is TAB. It is referred to in the documentation as the TAB Key, but its location on the 2068 isn't mentioned. The cursor will move to the next TAB position as shown on the status line at the bottom of the page. TAB positions are changed through the Main Menu. (To find the TAB values you will need, move the cursor to the position needed, and note down the Column position from the bottom line of the screen.) (As mentioned in the May Newsletter, TAB can be moved to CAPS-shift 1 by POKEing 42661,152 before entering MSCRIPT.)
Fn-6: Page down. This leaves the cursor in the same screen position, but writes the next 22 lines of text to the screen.
Fn-7: Page up. This moves the text on screen up 22 lines.

\section*{SAVE and LOAD Info}

MSCRIPT is completely self-contained: unlike almost all other programs, it makes no use of the original Timex operating system. In order to read or write to a cassette, then, MSCRIPT contains its own code. In writing this code, the authors didn't
follow the Timex system completely.
SAVEing
The Save command is reached by entering S or s
as the first character in the command line. The
Timex requires quote marks around the SAVE name.

MSCRIPT, however requires no quotes. A text file can be SAVEd under the name "letter" by typing: \(s\) letter
MSCRIPT will ignore leading spaces; "s letter" or "sletter" will SAVE as the same. Once the command line is ENTERed, the familiar phrase "Start tape and press ENTER" will appear. As with the Timex SAVE, data will be put out as soon as ENTER is pressed that second time. Unlike the Timex, MSCRIPT does not echo the tape signal to the screen, so the only way to tell if the signal is finished is that the text reappears on the screen.

In addition, the data format that MSCRIPT uses is different than Timex's, and MSCRIPT files cannot be loaded by the standard Timex load.

\section*{LOADing}

LOADing is different, as well. If your file was saved as "letter," as in the example above, it can be reloaded by using: 1 letter -or- lletter -or- 11
Using "1 litter" will bomb with the message "Tape IO Error!". Once the command line is ENTERed, you will again see the "Start tape and press ENTER" prompt. MSCRIPT means it! Press ENTER again, and MSCRIPT will listen for an incoming signal from the tape. Again, MSCRIPT does not echo the signal to the screen, so it can be difficult to tell where to start. In addition, MSCRIPT won't tell what text files it's reading - it either loads the file, or prints "Tape ID error!".

To counteract the lack of a visual echo to the screen, I recommend adding some sort of monitor to the tape recorder - either an LED that shows when a program is playing, or a high-resistance bypass to the speaker, allowing a faint echo to be heard.

To compensate for the lack of the tape's file name on screen, the best defense is an accurate log of each cassette's contents. If that fails and you have forgotten the name the file was SAVEd under, you have two choices: either LOAD using the first letter of the file (if you remember that), or use the HEADER program from the library tape to read the leader. Although the format of the header is different, HEADER will read the second through last character in the file name. HEADER won't tell you that eritical first letter, but it should jog your memory - at least it's better than trying all upper and lower case letters.

\section*{VERIF \(Y=\) APPEND}

Alas, VERIFY doesn't exist in MSCRIPT. However, MSCRIPT does include an important extra command, APPEND. The syntax is the same as other MSCRIPT tape comands, and it will non-destructivly allow you to combine an existing document with another one from
the tape. This can be used as a form of Verify for text files that are less than half the maximum. After the file is SAVEd, just rewind the tape, and APPEND the file again. If it was a good SAVE, it should go in easily, leaving you with two copies of the text file in memory. Check for obvious glitches, then block delete the second copy.

As a footnote, it should be noted that these problems of MSCRIPT's version of tape 10 may evaporate soon. In order to use MSCRIPT on disc, it is necessary to exit MSCRIPT. Versions that allow this have already been created by several ace programmers, including Jack Dohaney. Once MSCRIPT is exited, standard LOAD and SAVE commands can work.

\section*{Everyday Use: Text Formatting}

As you get accustomed to MSCRIPT, you will learn to use the special features offered by your printer. MSCRIPT allows these, but requires some homework in setting up the definitions of its special characters at some time before they appear in the text. If your writing tends to follow the same format, you may save time by creating a text file that contains only formatting information line length, margins, special printer definitions, etc. I went beyond this, and created a blank letter form, with spacing already worked out. When doing a series of reports, I created a report form and SAVEd it, thus speeding up the actual report writing, as I was constantly prompted for the next item to include. If you're using special TAB settings, you won't be able to save or load them; instead, just insert a comment line documenting the TAB positions you need, and insert them when you restart the program.

\section*{Multiple Copies}

MSCRIPT has no provision for printing multiple copies, but you can persuade it to print a few, if your document isn't too long. When the text is completed, enclose the entire text file with block markers as the first and last characters, move the cursor just beyond the last block marker, and press Fn-C for as many copies as you want (or have space for). Print as normal.

Printing Portions of Text.
MSCRIPT can't "officially" exclude a portion of text from being printed. A ">*" at the head of a line keeps that line from printing, but it's not effective for large blocks of text. However, there are two strategies you can use to exclude large blocks of text: 1) SAVE the full text to tape, and block-delete the unneeded portion before printing. 2) Block-move the desired text to the head of the
file, and end it with a new-page marker. Print in Single-Sheet mode, and when the text you want to print is on paper, press break this also works in Memotext).

\section*{Command Syntax}

MSCRIPT is very tolerant of variations of syntax. The manual specifies commands such as "JU=Y" in its discussion, but MSCRIPT will treat "j \(\mathrm{j}=\mathrm{y}\) ", or even "juy", as the same command. The full syntax is easier to read when you're trying to figure out why your printer just shot its platen through the wall, but the abbreviated syntax is quicker to type.

Don't forget to keep an accurate log of text files, and think about adding an audible monitor to the tape player. Lastly, if a text file doesn't go in, press ENTER again, rewind the tape, and try again - you probably forgot to press ENTER twice. Good luck!

MF

\section*{Facemaker for telecom}

I recently joined the ranks of UNIXusers, and started reading the collection of electronic bulletin boards who are known collectively (with their users) as "Usenet." . . A bit of "nettiquette" that I found amusing was the convention of using "Smileys." These are ;-) :-) B-) :(©) 8-) etc. (If you turn your head 90 degrees, they look like smiling faces. II is winking, 12 is the "standard" smiley. \$3 is wearing glasses, 14 has a fat nose, "5 is wearing granny glasses many more are possible using keys I don't have on my typewriter, such as "greater than" and "less than" signs for joking and frowning faces.) SMILEYS are placed at the end of a comment which, if said in person, would need to be softened by a smile. It can be difficult to determine when something printed is meant to be a joke or meant to be serious, whether someone is good-naturedly mouthing off or mounting a serious attack, and the presence (or absence!) of a SMLLEY is considered a significant piece of information. Example: "That person should be sentenced to a year of reattime programming in COBOL! :-)" Andrea Frankel San Diego, California


\section*{SPECTRUH HICRODRIUES}

 they and I 를 very ple르룰 the results．To USE the Hicradrivec on a Ty2nti the following．
i）The ZX Expancion Sucien



 cartridges．The cartridges consist of

> fafiblant cartridge.
> (b) A cartridge with desonstration prograte.
> Cc) buciness cartiddge with Tasiverd e and
\[
\begin{aligned}
& \text { ddef ganes cartridge yich }
\end{aligned}
\]
designer utilitiy＝



 frow the Englen ticico Connections ins kiliburn court． Nevpor foblif IEland Reaty


Et The EEEGNJ itet required i＝

 connerter tr the spertruta wan EOntercter embiguration． Although adifertised as a Hicradrive adatiter it can we used ta connect other jpectrun

 frote The Engtish tifiro

3ifinatly yout need ta fane your
要于ues Ir told that you can use
the Microdrives with a Spectrut
 あne of Dongiac Dewey 5
Elulators However so far T car
onty confire success with 引n
Etitator＝I ve been unable to
get the Microurives worming with a spectrele fOH of romswitch I tade rollowing the
inctructions in the Decenber
1GB4 CATS newstetter I Io vinderstand that otner pegple have had arear success using the
microdrivec with an Eulutiot．
Spertruin FOHs，Rowswitches，and
EMuLators are available for Eeverat sources including The


To use the Mierodrives the Microdrive adapter is plugged into the back of your Tsegar，
 the adapter and finaly ine
riocrodivive inself is connected

The obyious adyantages of the Mincodrives are tass data storage gnd fisi prograt find and loading．The bongest mading
 fut 4BK proquan It is als a big adsantage to be atore to jef type in a progras name and let the computer find it in 3 Bather of secturds rather itian searching throunh a cassethe



 is capatie of sooring sone Efitio to gek＝0f inia afier it has


Iue been athe to transfer
soee programs to incorriver rol tape using a tape called Trans Express frow Foonatic Foblot． Howeyer I＇ve only been able to transfer about sox of tu
50fteare this way．I fave
recently ot tained another
transfer program frop LEEH of Englands but this tape requires a lot of tape manipulation to get prograss onto Hierodirifes． I＇ve ween told that there ís now thardwarg fix ayy Ealled Interface 3 （NOT Gade by sinctairy hich plugs into the back af Interface 1 and enatles all prograss to be transferfed to Microdrive Eartridges：
Frobless haye been fet so far： One Microdrive cartiridge has jamedn I solued this by pulling on the tape but I did tose one Frogran on the cartridge on another cartridge one file
would not load after I fad erased soxe fifes even though the CRTalogue comend said it ＊as there．
I can thoroughty recomeend the Microdirive syster．It does wort and it is auailable now， something which is not true of all of the other lass storage atternatiqes now being offered． Th is cheaper to set up than dist based systems and Empetisive with other stringy floppy susters：If Interface turns out to be as oood at transferring progrags to
Hicrodrive as is Elaiked then this will give the Hixcrodrives a tig anvantage

\section*{TOWY EROOKS 972－454i}

P．5．This text was prepared using a Microdriue based yrersion of HECRIPT driying a 2 and printer in fat charachers mode．

\section*{MODULO!}

When we first learned long division, we discovered that not all division problems came out evenly. For that first year, we were told to report the undivided portion as the remainder. In the next year, a solution was offered, along with the introduction of fractions - just add a fraction created from the remainder and the divisor. With the introduction of decimals, we learned how to continue the division to any desired accuracy - a system that our computers follow even now. After the introduction of decimal division, it may have seemed as though the remainder was baby stuff, to be left behind forever.

T'aint true, however. In "adult" mathematics, the lowly remainder reappears with the concept of "modulus." It is a useful concept, with a number of applications in programming, and I'll discuss its use and implementation here.

How to Get It
On some computers, there is a function, MOD, that will return the remainder of a given division problem. It is invoked by LET \(N=x\) MOD y. This would set N equal to the remainder of x divided by y . While the Timex does not have a MOD function, we can determine when the MODULO equals zero by comparing \((x / y)\) with INT \((x / y)\). If \(x\) can be evenly divided by \(y_{p}(x / y)\) will equal INT \((x / y)\), as \((x / y)\) will have no decimal component.

If the actual value of the remainder is needed, we can calculate this remainder: since the decimal fraction represents the remainder divided by the divisor, by multiplying the divisor back in again, we can "reconstitute" the remainder. First we isclate the decimal fraction, using ( \((x / y)\)-INT ( \(x-y\) )); then we multiply by the divisor: "*y." The formula in BASIC that does this is: LET \(N=((x / y)\)-INT \((x / y)) * y\).

\section*{Where to Use It}

In fact, the Timex uses modulo in two places; RND is generated using a formula that involves modulo calculations, and TAB is reduced MOD 32 (try PRINT TAB 50; "HI"). Neither application can be adapted to other uses, however. To do that, we'll have to use the formula that appeared above.

Let's start at the bottom, with modulo 2. Try:
10 FOR \(X=1\) TO 10
20 PRINT \(X_{f}(X / 2)-1\) NT \(\left.(X / 2)\right) * 2\) 30 NEXT \(X\)
\begin{tabular}{ll}
1 & 1 \\
2 & 0 \\
3 & 1 \\
4 & \(0 . . .\). etc. Note that
\end{tabular}
even numbers Modulo 2 are equal to zero. We now have a way to sieve even from odd!

Now change the "2" in the above program to "3". You should now get:
\begin{tabular}{ll}
1 & 1 \\
2 & 2 \\
3 & 0 \\
4 & 1 \\
5 & 2 \\
6 & 0.0 .0 etc.
\end{tabular}

By changing the number, you can construct a formula that will return to zero at any regular interval. There are a number of useful intervals that can be used. By looking at a series modulo 12, you might keep track of months, but pause for a yearly summary every twelve months.

A major use of modulo is in converting between number bases. At times when dealing with the Timex, you will deal with Binary, Decimal, Hexadecimal, and what one writer has dubbed 256 -imal. If you would like to convert numbers less than 256 to hexadecimal, you must reduce the number modulo 16. To find the two byte values for addresses in the 2-80 environment, the decimal address must be reduced modulo 256. To re- assemble the two bytes into a single decimal number, you must multiply the high-order byte by 256, and add it to the low-order byte. Since the low-order byte represents the remainder of a division, it is not multiplied by anything. An example is calculating RAMTOP on the 1000: PRINT PEEK 16388+256* PEEK 16389.

If you look over past programs, you will see a number of lines that contain the ( \(x / y\) )- INT \((x / y)\) idea. Each of these is using the modulo, that, as the remainder, you thought was left behind in fourth grade!

Thanks to The Algorithm Corner, in June '85 Computer Trader Magazine, for the idea.
MF
Continued from p: 6
If you know hou big the

butes use that number. If it
is much emallet than s70ed: it
Mit reduce your loading time
considerablu.
Read over appendix E Df the
manual if you uant additionat
information. I atso wint to
thank Mark Fischer for his
helpfutness and patience in
answering my questions on this
subject.
v. encer
BINARY NUMBERS
maximum value of ONE BYTE Positional values or 255

J. Cunger
,o10170 of 83
\(=18)\)
010100
10101100
(101-83
C.A.T.S. 17 July

\section*{}

Media Owner to Buy Sinclaic Researeh

\author{
By Miichael Schrage \\ Washington Pout Suafi Writer
}

Sinclair Research Ltd., a leading British personal computer company and the corporate brainchild of inventor Clive Sinclair, will be acquired by British media owner Robert Maxwell in a deal valued at about \(\$ 15.2\) million.

The purchase bringe together two of Britain's most unusual and best-known businessmen: Maxwell, the outspoken Czechoslovakian emigré and war hero who has built a multimillion-dollar communications empire in his adopted country, and Sinclair, the balding, bespectacled and entreprencurial "boffin" who built the world's first under- \(\$ 100\) computer and won the admiration of the conservative Thatcher government plus a knighthood.

The deal, completed this weekend in London, came with Sinclair Research just weeks away from insolvency, according to sources close to the company. As with other computer manufacturers around the world, Sinclair has been badly hurt by a drop in sales.

Last month, cash flow problems caused by excess computer inventory prompted the company to scek a two-month extension on \(\$ 12\) million worth of debt payments to major suppliers Thorn EMI Ltd. and Timex. Sinclair recently was forced to start looking for a new managing directer for his company.

According to a Maxwell spokes. man, Sinclair will be a "ife pres:dent" of the company "but be won't have an executive position." Maxwell is looking for a new managing director for the company.

Moxwell "belicves in Sir Clive"s inventive genius," said the spokesman, "but he's failed in the past because he doesn't understand commercial marketing things."
Maxwell is chairnan of Pergamon Press Ltd., The British Printing \& Communication Corp., Mirror Group Newspapers and Rediffusion Cablevision, Britain's largest caile television company.

by Jane Bird and Peter Kingston

\begin{abstract}
TROUBLED Sinclair Research has suffered a further blow with the discovery that Timex, the subcontractor which assembles most of its computers, is selling them abroad - and undercutting it on price.
Timex believes that its contract allows it to do this if Sinclair falls behind with payments. The Dundee-based assembler and Sinclair's other prime contractor, Thorn EMI, are together believed to be owed around f 10 m , though both have agreed to extend credit by two months.

Timex has approached Zeta Marketing of Manchester and asked it to dispose of an initial 65,000 Spectrums overseas. Zeta is offering these at 2 trade price of \(\mathbf{5 7 1}\), around \(\mathbf{\$ 1 6}\) less than Sinclair. The machine retails for \(£ 129.95\).

Potential investors in Sinclair are expected to demand the introduction of some strong new senior management. The company is already looking for a chief executive so that Sir Clive could step down from the post and remain as chairman. But troubleshooting chief executives for troubled micro companies are proving hard to find - Acorn has been looking for several months without success. One obvious candidate, Robb Wilmot, has already joined forces with Sinclair for an ambitious chip project. The possibility that he might accept a full-time post has been denied by Wilmot, who is chairman of ICL, Britain's largest main-frame computer maker.
\end{abstract}

\section*{New Product Announcements}

\section*{P. Hargrave}

PO Box 1537
Ladysmith, BC
CANADA VOR 2E0
All prices include first class shipping.
CELESTIAL NAVIGATION: A program to reduce sextant sights and plot position anywhere in the world. Specifies best stars for a fix out of 192 in memory. Requires only angles and accurate time (and a 2068). By L. Benson. \(\$ 34.00\) CAN \(\$ 25.00\) US

STOCKS and LOANS: Two applications programs. STOCKS assists decisions in option trading. LOANS gives cost of borrowing info; total paid, monthly payments, etc. By F. Hamersveld. \$19.50 CAN \(\$ 14.50\) US

COMPETITION: A business simulation program. Compete with the computer, or up to five other players. Includes graphs and financial statements to chart your progress. By P. Hargrave. \(\$ 19.50\) CAN \(\$ 14.50\) US

MILLIPEDE: An adaption of a certain arcade game for the 2068. Kid tested! By P. Hargrave,
\(\$ 15.90\) CAN \(\$ 11.25\) US
Integrated Data Systems Peter Mc Mullin
30 Brooknont Rd. 2348 Queen St. E.
Toronto, Ont.
Canada, M4L 3N1 Toronto, Ont. Canada, M4E 169

CENTRONICS I/F for the 1000, and Word Sine II.5: Updated 80 column version of Word Sinc II.4. Additional features include: custom fonts, multiple TABs and outdents; more. By Peter McMullin. \(\$ 30.00\) CAN \(+\$ 1.00\) s\&h

\section*{Curry Computer \\ 5344 W. Banff Ln. \\ Glendale, AZ 85306}

A variety of programs for \(2 \times / 81,2068\), Spectrum, and QL. Includes Miner '49er, Lode Runner, Deus ex Machina, and GraphiQL. Write for catalog \& prices.

Capitol Area Timex/Sinclair Users' Group P.O.BOX 725 Bladensbu:g, MD 20710

Name
Address \(\qquad\)
ZIP
Na: ne
\(\qquad\)
Fine Home \(\qquad\) Office \(\qquad\)
nembersinp - 15.00 (family/individual); make checks parable tc C.A.T.S. If family membership, please list family members participating:

Occupation \(\qquad\)
ram Radio call sign
Equipment
\(2 \times 80\)
\(\therefore 80\)
Z: 81
- 1000

IS 2000

full keyboard
Printer
type
other interface
games, ha: radio interface, business, other, etc. \(\qquad\)

Languages: Basic
Machine \(\qquad\)
OTher \(\qquad\)
\(\qquad\)
No. of years computer experience \(\qquad\)
That committees would you like to serve on?
comments: Where did you hear about C.A.T.S.?


Do not write below:
Pt. Pd.
Amt.
Membership No.
Ca. Ck.

\title{
TVIY甘LUW
}

בחヨiכ彐y







The mailing address of the Capitol Area Timex／Sinclair User＇s Group is：
```

Capitol Area Timex/Sinclair User'g oroup
P.O. Box }72
Bladensburg. MD 20710

```

CATS is a non－profit special interest organization dedicated to serving the interests of those who own，use，or ar interested in learning more about the Timex／Sinclair family of personal computers．

The official contact person for CATS is JULES GESANG： 301～922－0767
Meptings are held on the second Saturday of each month at 2 P．M．in the large meting room of the New Carroliton Branch Public Library．

Ham Radio Network Information
Q2X Net．．．．Wednesdays，9p．m．local time； 14.345 MMz NU4F NCS Eastern Regional Sinclair Net．．．Sundays， 1608 zi 7.245 MHz KQ2F NCS```

